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1
COORDINATE BASED QOS ESCALATION

BACKGROUND

1. Field of the Invention

The present invention relates generally to video process-
ing, and in particular to methods and mechanisms for
generating priorities for pixel fetch requests within a digital
system.

2. Description of the Related Art

Displays are incorporated into a wide variety of systems
and devices such as smart phones, tablets, netbooks, note-
book computers, and other devices. These systems and
devices include functionality for generating images and
data, including video information, which are subsequently
output to a display device. Such devices typically include
video graphics circuitry to process digital images and video
information for subsequent display.

In digital imaging, the smallest item of information in an
image is called a “picture element,” or more generally
referred to as a “pixel.” For convenience, pixels are typically
arranged in a regular two-dimensional grid. By using such
an arrangement, many common operations can be imple-
mented by uniformly applying the same operation to each
pixel independently. Since each pixel is an elemental part of
a digital image, a greater number of pixels can provide a
more accurate representation of the digital image. To rep-
resent a specific color on an electronic display, each pixel
may have three values, one each for the amounts of red,
green, and blue present in the desired color. Some formats
for electronic displays may also include a fourth value,
called alpha, which represents the transparency of the pixel.
This format is commonly referred to as ARGB or RGBA.
Another format for representing pixel color is YCbCr, where
Y corresponds to the luma, or brightness, of a pixel and Cb
and Cr correspond to two color-difference chrominance
components, representing the blue-difference (Cb) and red-
difference (Cr).

Most images and video information displayed on display
devices such as LCD screens are interpreted as a succession
of image frames, or frames for short. While generally a
frame is one of the many still images that make up a
complete moving picture or video stream, a frame can also
be interpreted more broadly as simply a still image displayed
on a digital (discrete, or progressive scan) display. A frame
typically consists of a specified number of pixels according
to the resolution of the image/video frame. Most graphics
systems use frame buffers to store the pixels for image and
video frame information. The term “frame buffer” therefore
often denotes the actual memory used to hold picture/video
frames. The information in a frame buffer typically consists
of color values for every pixel to be displayed on the screen.
Color values are commonly stored in 1-bit monochrome,
4-bit palletized, 8-bit palletized, 16-bit high color and 24-bit
true color formats. The total amount of the memory required
for frame buffers to store image/video information depends
on the resolution of the output signal, and on the color depth
and palette size.

The frame buffers can be situated in memory elements
dedicated to store image and video information, or they can
be situated in the system memory. Consequently, system
memory may be used to store a set of pixel data that defines
an image and/or video stream for display on a display
device. Typically, applications running in such a system can
write the pixel data into the system memory, from where the
pixel data may be obtained to eventually generate a set of
image/video signals for generating the image on the display

10

15

20

25

30

35

40

45

50

55

60

65

2

device. In such systems, fetching the frames (pixel infor-
mation) from system memory may place high demands on
the system, as other devices may also be competing for
memory access. As consequence, a high bandwidth may be
required from memory in order to keep up with the requests
for data. In addition, as each system memory access requires
a certain amount of processing power, requests for high
volume pixel data may eventually result in premature battery
depletion in battery-operated devices, such as mobile
phones, tablets, and notebook computers.

The design of a smartphone or tablet may include user
interface layers, cameras, and video sources such as media
players. Each of these sources may utilize video data stored
in memory. A corresponding display controller may include
multiple internal pixel-processing pipelines for these
sources. Each of these pixel-processing pipelines may make
requests to memory for the corresponding source frames.

In addition to the pixel-processing pipelines, a typical
device also has numerous other non-display related func-
tional units that need access to memory (e.g. processors,
peripherals, etc.). For example, a processor accesses
memory to read instructions for execution, to read and write
data during execution of the instructions, etc. A network
device reads and writes packet data to/from memory. A mass
storage device writes stored data being transferred to
memory, or reads memory data being transferred to the mass
storage device

Each memory request sent from one of the multiple
sources includes both overhead processing and information
retrieval processing. A large number of requests from sepa-
rate sources of the device may create a bottleneck in the
memory subsystem. The repeated overhead processing may
reduce the subsystem performance.

With numerous devices potentially accessing memory, a
mechanism for selecting among requests, ordering requests
from different requestors, etc. is needed. The mechanism
needs to balance performance requirements of the requestors
(which differ, depending on the type of requester) as well as
providing good memory performance (e.g. grouping opera-
tions to the same page of memory to improve memory
bandwidth utilization and reduce average power consump-
tion, etc.).

Some devices are categorized as real-time devices. These
devices are characterized by a need to receive data at a
certain rate in real time, or erroneous operation may occur.
For example, video data needs to be provided within the
frame rate of the video, or visual artifacts may occur on the
display. Similarly, audio devices are real time. If the audio
data is not available at the audio rate, skips in the audio
playback may occur. Other devices are non-real time, such
as processors. Non-real time devices can perform better if
data is provided more rapidly, but will not have erroneous
operation if data is not provided as rapidly.

One mechanism that can be used to balance the require-
ments of real time and non-real time device is quality of
service (QoS). The real time devices can be provided with
several levels of QoS, with increasing levels of priority. As
the need for data becomes more critical to prevent erroneous
operation, the device can issue memory operations with
higher levels of QoS. The memory controller can respond
more rapidly to this higher QoS requests, preventing the
erroneous operation that might otherwise occur.

There are costs for issuing the higher QoS requests, at the
system level. The memory controller may bypass other
requests that might be more efficiently performed together
(e.g., requests that are to an already-open page in the
memory). Accordingly, overall system performance can
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suffer if the QoS levels of real time requests are increased
too frequently. Because erroneous operation occurs for real
time devices if their data needs are not met, the determina-
tion of which QoS level to use for a given memory operation
may be made conservatively (i.e., assuming a worst case
scenario in terms of memory load from other requestors in
the system). However, while such determinations can ensure
the correct operation of the real time devices, the increase in
QoS levels can occur more frequently than necessary if the
worst case scenario is not in effect, reducing memory
bandwidth utilization and increasing power consumption in
the memory unnecessarily.

SUMMARY

Systems and methods for performing coordinate based
QoS escalation are disclosed.

In various embodiments, a semiconductor chip includes a
memory controller and a display controller. The memory
controller may control accesses to a shared memory, such as
an external memory located off of the semiconductor chip.
The display controller may include a display pipeline con-
figured to read frame data stored in memory for an image to
be presented on a display. The display pipeline may include
one or more pixel-processing pipelines configured to process
pixel data and convey the processed pixel data to a single
output first-in first-out (FIFO) buffer. Each of the pixel-
processing pipelines may be able to process the frame data
received from the memory controller for a respective video
source. Each of the pixel-processing pipelines may indepen-
dently and simultaneously access respective frame buffers
stored in memory. In some embodiments, the display con-
troller may be configured to composite the destination
frames from source frames of the video sequence and one or
more other image sources. A destination frame may then be
presented on a respective display screen.

In one embodiment, each source frame may be associated
with a separate requestor identifier (ID). In some cases
during the processing of multiple source frames, the fetching
of source pixels for a single requestor may lag behind the
other requestors. Rather than escalating the priority of
outstanding fetch requests for all requestors in these cases,
only the priority of the delayed requestor may be escalated
while the other requestors may maintain their current pri-
ority level. In one embodiment, the priority level for the
requestors may be designated using a quality of service
(QoS) level which is assigned to each fetch request.

In one embodiment, the display control unit may calculate
an output equivalent coordinate for each source pixel fetch
request generated by the various requestors. The output
equivalent coordinate of a given source pixel is the coordi-
nate of the earliest output pixel that cannot be generated
without the given source pixel. A given source pixel may
only be a part of one (or multiple) output pixels when scaling
or blending is performed. In some cases, even when not
scaling, a source pixel may be modified before being dis-
played. When scaling, it is possible for multiple source
pixels to have the same output equivalent coordinate. How-
ever, in some cases, if scaling is not performed, there may
be a 1:1 correspondence between the coordinates of the
source pixels of the source frame and the coordinates of the
destination pixels of the destination frame.

In one embodiment, the output coordinate of the oldest
pixel in the pixel processing pipeline(s) for each requestor
may be determined. In one embodiment, the oldest pixel
may be the next pixel to be popped from the output FIFO.
Also, the output equivalent coordinate of the oldest out-
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4

standing read request for each requestor may be determined.
The output equivalent coordinate of the oldest outstanding
read request refers to the youngest output pixel for which all
corresponding source pixels have not yet been received by
the display pipeline. The difference between the oldest pixel
and the output equivalent coordinate of the oldest outstand-
ing read request may be calculated for each requestor. In
other words, the display control unit may determine for each
requestor how many output pixels ahead the requestor is of
the next pixel to be popped out of the output FIFO. The
display processing unit may then use these per-requestor
output pixel distances when generating a priority level for
source pixel fetch requests on a per-requestor basis.

In one embodiment, one or more programmable thresh-
olds may be utilized. The per-requestor output pixel distance
may be compared to the threshold(s) and the priority level of
corresponding requests may be set based on the comparison
to the threshold(s). For example, in one embodiment, if the
output pixel distance is less than a low threshold, then the
outstanding requests for the corresponding requestor ID may
be given the highest priority. In some embodiments, the
display control unit may implement on and off thresholds to
permit hysteresis in the changing between priority levels.
The hysteresis may help avoid rapidly and/or repeatedly
transitioning back and forth between priority levels over a
short period of time. Accordingly, for each priority level
there may be an on threshold above which the output pixel
distance is to rise to increase the priority level, and an off
threshold below which the output pixel distance is to drop to
decrease the priority level. In such embodiments, the current
priority level may be included in determining the priority
level for a request, in addition to the thresholds. Other
embodiments may not implement hysteresis and may have
one threshold level per priority level. It is noted that embodi-
ments which support hysteresis may be programmed to
operate without hysteresis by setting the on and off thresh-
olds to the same value.

These and other features and advantages will become
apparent to those of ordinary skill in the art in view of the
following detailed descriptions of the approaches presented
herein.

BRIEF DESCRIPTION OF THE DRAWINGS

The above and further advantages of the methods and
mechanisms may be better understood by referring to the
following description in conjunction with the accompanying
drawings, in which:

FIG. 1 is a block diagram illustrating one embodiment of
a system on chip (SOC) coupled to a memory and one or
more display devices.

FIG. 2 is a block diagram illustrating one embodiment of
a display control unit.

FIG. 3 is a block diagram illustrating one embodiment of
a video/UI pipeline.

FIG. 4 illustrates one embodiment of a Digital Differential
Analyzer (DDA).

FIG. 5 illustrates one embodiment of a table of per-
requestor pixel distances.

FIG. 6 illustrates one embodiment of a destination frame
showing the output coordinates of pixels retrieved for a
given requestor.

FIG. 7 illustrates one embodiment of a destination frame
showing the output coordinates of pixels retrieved for an
individual requestor.
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FIG. 8 is a generalized flow diagram illustrating one
embodiment of a method for implementing targeted escala-
tion of pixel requests based on a calculated pixel distance.

FIG. 9 is a generalized flow diagram illustrating one
embodiment of a method for assigning QoS levels to pixel
fetch requests.

FIG. 10 is a block diagram of one embodiment of a
system.

DETAILED DESCRIPTION OF EMBODIMENTS

In the following description, numerous specific details are
set forth to provide a thorough understanding of the methods
and mechanisms presented herein. However, one having
ordinary skill in the art should recognize that the various
embodiments may be practiced without these specific
details. In some instances, well-known structures, compo-
nents, signals, computer program instructions, and tech-
niques have not been shown in detail to avoid obscuring the
approaches described herein. It will be appreciated that for
simplicity and clarity of illustration, elements shown in the
figures have not necessarily been drawn to scale. For
example, the dimensions of some of the elements may be
exaggerated relative to other elements.

This specification includes references to “one embodi-
ment”. The appearance of the phrase “in one embodiment”
in different contexts does not necessarily refer to the same
embodiment. Particular features, structures, or characteris-
tics may be combined in any suitable manner consistent with
this disclosure. Furthermore, as used throughout this appli-
cation, the word “may” is used in a permissive sense (i.e.,
meaning having the potential to), rather than the mandatory
sense (i.e., meaning must). Similarly, the words “include”,
“including”, and “includes” mean including, but not limited
to.

Terminology. The following paragraphs provide defini-
tions and/or context for terms found in this disclosure
(including the appended claims):

“Comprising.” This term is open-ended. As used in the
appended claims, this term does not foreclose additional
structure or steps. Consider a claim that recites: “An appa-
ratus comprising a pixel processing pipeline . . . .” Such a
claim does not foreclose the apparatus from including addi-
tional components (e.g., a processor, a memory controller).

“Configured To.” Various units, circuits, or other compo-
nents may be described or claimed as “configured to”
perform a task or tasks. In such contexts, “configured to” is
used to connote structure by indicating that the units/
circuits/components include structure (e.g., circuitry) that
performs the task or tasks during operation. As such, the
unit/circuit/component can be said to be configured to
perform the task even when the specified unit/circuit/com-
ponent is not currently operational (e.g., is not on). The
units/circuits/components used with the “configured to”
language include hardware—for example, circuits, memory
storing program instructions executable to implement the
operation, etc. Reciting that a unit/circuit/component is
“configured to” perform one or more tasks is expressly
intended not to invoke 35 U.S.C. §112, sixth paragraph, for
that unit/circuit/component. Additionally, “configured to”
can include generic structure (e.g., generic circuitry) that is
manipulated by software and/or firmware (e.g., an FPGA or
a general-purpose processor executing software) to operate
in a manner that is capable of performing the task(s) at issue.
“Configured to” may also include adapting a manufacturing
process (e.g., a semiconductor fabrication facility) to fabri-
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6

cate devices (e.g., integrated circuits) that are adapted to
implement or perform one or more tasks.

“First,” “Second,” etc. As used herein, these terms are
used as labels for nouns that they precede, and do not imply
any type of ordering (e.g., spatial, temporal, logical, etc.).
For example, in a display controller with a plurality of
requestors, the terms “first” and “second” requestors can be
used to refer to any two of the plurality of requestors.

“Based On.” As used herein, this term is used to describe
one or more factors that affect a determination. This term
does not foreclose additional factors that may affect a
determination. That is, a determination may be solely based
on those factors or based, at least in part, on those factors.
Consider the phrase “determine A based on B.” While B may
be a factor that affects the determination of A, such a phrase
does not foreclose the determination of A from also being
based on C. In other instances, A may be determined based
solely on B.

Turning now to FIG. 1, a block diagram of one embodi-
ment of a system on chip (SOC) 10 is shown coupled to a
memory 12 and one or more display devices 20. A display
device may be more briefly referred to herein as a display.
As implied by the name, the components of the SOC 10 may
be integrated onto a single semiconductor substrate as an
integrated circuit “chip.” In some embodiments, the com-
ponents may be implemented on two or more discrete chips
in a system. However, the SOC 10 will be used as an
example herein. In the illustrated embodiment, the compo-
nents of the SOC 10 include a central processing unit (CPU)
complex 14, a display pipe 16, peripheral components
18A-18B (more briefly, “peripherals”), a memory controller
22, and a communication fabric 27. The components 14, 16,
18A-18B, and 22 may all be coupled to the communication
fabric 27. The memory controller 22 may be coupled to the
memory 12 during use. Similarly, the display pipe 16 may be
coupled to the displays 20 during use. In the illustrated
embodiment, the CPU complex 14 includes one or more
processors 28 and a level two (L.2) cache 30.

The display pipe 16 may include hardware to process one
or more still images and/or one or more video sequences for
display on the displays 20. Generally, for each source still
image or video sequence, the display pipe 16 may be
configured to generate read memory operations to read the
data representing the frame/video sequence from the
memory 12 through the memory controller 22. In one
embodiment, each read operation may include a quality of
service (QoS) parameter that specifies the requested QoS
level for the operation. The QoS level may be managed to
ensure that the display pipe 16 is provided with data in time
to continue displaying images without visual artifacts (e.g.,
incorrect pixels being displayed, “skipping”, or other visu-
ally-identifiable incorrect operation).

The display pipe 16 may be configured to perform any
type of processing on the image data (still images, video
sequences, etc.). In one embodiment, the display pipe 16
may be configured to scale still images and to dither, scale,
and/or perform color space conversion on the frames of a
video sequence. The display pipe 16 may be configured to
blend the still image frames and the video sequence frames
to produce output frames for display. The display pipe 16
may also be more generally referred to as a display control
unit. A display control unit may generally be any hardware
configured to prepare a frame for display from one or more
sources, such as still images and/or video sequences.

More particularly, the display pipe 16 may be configured
to retrieve source frames from one or more source buffers
26A-26B stored in the memory 12, composite frames from
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the source buffers, and display the resulting frames on the
display 20. Source buffers 26 A and 26B are representative of
any number of source buffers which may be stored in
memory 12. Accordingly, display pipe 16 may be configured
to read the multiple source buffers 26 A-26B and composite
the image data to generate the output frame. In some
embodiments, rather than displaying the output frame, the
resulting frame may be written back to memory 12. In one
embodiment, there may be four separate requestors in dis-
play pipe 16, and each requestor may retrieve data from a
separate plane of a video or user interface frame. In other
embodiments, display pipe 16 may include other numbers of
requestors.

The displays 20 may be any sort of visual display devices.
The displays may include, for example, touch screen style
displays for mobile devices such as smart phones, tablets,
etc. Various displays 20 may include liquid crystal display
(LCD), light emitting diode (LED), plasma, cathode ray tube
(CRT), etc. The displays may be integrated into a system
including the SOC 10 (e.g. a smart phone or tablet) and/or
may be a separately housed device such as a computer
monitor, television, or other device. The displays may also
include displays coupled to the SOC 10 over a network
(wired or wireless).

In some embodiments, the displays 20 may be directly
connected to the SOC 10 and may be controlled by the
display pipe 16. That is, the display pipe 16 may include
hardware (a “backend”) that may provide various control/
data signals to the display, including timing signals such as
one or more clocks and/or the vertical blanking interval and
horizontal blanking interval controls. The clocks may
include the pixel clock indicating that a pixel is being
transmitted. The data signals may include color signals such
as red, green, and blue, for example. The display pipe 16
may control the displays 20 in real-time, providing the data
indicating the pixels to be displayed as the display is
displaying the image indicated by the frame. The interface to
such displays 20 may be, for example, VGA, HDMI, digital
video interface (DVI), a liquid crystal display (LCD) inter-
face, a plasma interface, a cathode ray tube (CRT) interface,
any proprietary display interface, etc.

The CPU complex 14 may include one or more CPU
processors 28 that serve as the CPU of the SOC 10. The CPU
of'the system includes the processor(s) that execute the main
control software of the system, such as an operating system.
Generally, software executed by the CPU during use may
control the other components of the system to realize the
desired functionality of the system. The CPU processors 28
may also execute other software, such as application pro-
grams. The application programs may provide user func-
tionality, and may rely on the operating system for lower
level device control. Accordingly, the CPU processors 28
may also be referred to as application processors. The CPU
complex may further include other hardware such as the [.2
cache 30 and/or an interface to the other components of the
system (e.g., an interface to the communication fabric 27).

The peripherals 18A-18B may be any set of additional
hardware functionality included in the SOC 10. For
example, the peripherals 18A-18B may include video
peripherals such as video encoder/decoders, image signal
processors for image sensor data such as camera, scalers,
rotators, blenders, graphics processing units, etc. The
peripherals 18 A-18B may include audio peripherals such as
microphones, speakers, interfaces to microphones and
speakers, audio processors, digital signal processors, mixers,
etc. The peripherals 18A-18B may include interface con-
trollers for various interfaces external to the SOC 10 includ-
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ing interfaces such as Universal Serial Bus (USB), periph-
eral component interconnect (PCI) including PCI Express
(PCle), serial and parallel ports, etc. The peripherals 18A-
18B may include networking peripherals such as media
access controllers (MACs). Any set of hardware may be
included.

The memory controller 22 may generally include the
circuitry for receiving memory operations from the other
components of the SOC 10 and for accessing the memory 12
to complete the memory operations. The memory controller
22 may be configured to access any type of memory 12. For
example, the memory 12 may be static random access
memory (SRAM), dynamic RAM (DRAM) such as syn-
chronous DRAM (SDRAM) including double data rate
(DDR, DDR2, DDR3, etc.) DRAM. Low power/mobile
versions of the DDR DRAM may be supported (e.g.
LPDDR, mDDR, etc.). The memory controller 22 may
include various queues for buffering memory operations,
data for the operations, etc., and the circuitry to sequence the
operations and access the memory 12 according to the
interface defined for the memory 12.

The communication fabric 27 may be any communication
interconnect and protocol for communicating among the
components of the SOC 10. The communication fabric 27
may be bus-based, including shared bus configurations,
cross bar configurations, and hierarchical buses with
bridges. The communication fabric 27 may also be packet-
based, and may be hierarchical with bridges, cross bar,
point-to-point, or other interconnects.

It is noted that the number of components of the SOC 10
(and the number of subcomponents for those shown in FIG.
1, such as within the CPU complex 14) may vary from
embodiment to embodiment. There may be more or fewer of
each component/subcomponent than the number shown in
FIG. 1. It is also noted that SOC 10 may include many other
components not shown in FIG. 1. In various embodiments,
SOC 10 may also be referred to as an integrated circuit (IC),
an application specific integrated circuit (ASIC), or an
apparatus.

FIG. 2 illustrates one embodiment of a display control
unit 200. Display control unit 200 may represent display
pipe 16 included in SOC 10 in FIG. 1. Display control unit
200 may be coupled to a system bus 230 and to a display
backend (not shown). In some embodiments, a display
backend may directly interface to the display to display
pixels generated by display control unit 200. Display control
unit 200 may include functional sub-blocks such as one or
more video/user interface (UI) pipelines 201A-B, blend unit
202, control unit 205, and output First-In, First-Out buffer
(FIFO) 210. Display control unit 200 may also include other
components (e.g., control registers, parameter FIFO) which
are not shown in FIG. 2 to avoid cluttering the figure.

System bus 230, in some embodiments, may correspond
to communication fabric 27 from FIG. 1. System bus 230
couples various functional blocks such that the functional
blocks may pass data between one another. Display control
unit 200 may be coupled to system bus 230 in order to
receive video frame data for processing. In some embodi-
ments, display control unit 200 may also send processed
video frames to other functional blocks and/or memory that
may also be coupled to system bus 230.

The display control unit 200 may include one or more
video/UI pipelines 201A-B, each of which may be a video
and/or user interface (UI) pipeline depending on the embodi-
ment. It is noted that the terms “video/UI pipeline” and
“pixel processing pipeline” may be used interchangeably
herein. In other embodiments, display control unit 200 may
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have one or more dedicated video pipelines and/or one or
more dedicated Ul pipelines. Each video/UI pipeline 201
may fetch a video or image frame from a buffer coupled to
system bus 230. The buffered video or image frame may
reside in a system memory such as, for example, system
memory 12 from FIG. 1. Each video/UI pipeline 201 may
fetch a distinct image and may process the image in various
ways, including, but not limited to, format conversion (e.g.,
YCbCr to ARGB), image scaling, and dithering. In some
embodiments, each video/UI pipeline may process one pixel
at a time, in a specific order from the video frame, outputting
a stream of pixel data, and maintaining the same order as
pixel data passes through.

In one embodiment, when utilized as a user interface
pipeline, a given video/UI pipeline 201 may support pro-
grammable active regions in the source image. The active
regions may define the only portions of the source image to
be displayed. In an embodiment, the given video/UI pipeline
201 may be configured to only fetch data within the active
regions. Outside of the active regions, dummy data with an
alpha value of zero may be passed as the pixel data.

In one embodiment, display control unit 200 may utilize
a separate requestor ID for each plane of the source pixel
data. For example, a two-plane YUV source may be
retrieved from memory and processed by two separate
requestors, with a requestor for each plane. In one embodi-
ment, display control unit 200 may be processing two
separate two-plane sources for a total of four requestor IDs.
Each requestor may be monitored separately to determine if
it is falling behind the other requestors. In one embodiment,
control unit 205 may be configured to track how far ahead
each requestor is of the most recently popped pixel from
output FIFO 210 as a way of determining if the display is at
risk of exhibiting visual artifacts.

Blend unit 202 may receive a pixel stream from one or
more video/UI pipelines 201. If only one pixel stream is
received, blend unit 202 may simply pass the stream through
to the next sub-block. However, if more than one pixel
stream is received, blend unit 202 may blend the pixel colors
together to create an image to be displayed. In various
embodiments, blend unit 202 may be used to transition from
one image to another or to display a notification window on
top of an active application window. For example, a top
layer video frame for a notification, such as, for a calendar
reminder, may need to appear on top of an internet browser
window. The calendar reminder may comprise some trans-
parent or semi-transparent elements in which the browser
window may be at least partially visible, which may require
blend unit 202 to adjust the appearance of the browser
window based on the color and transparency of the calendar
reminder.

In some embodiments, the blended pixel stream may be
converted to a different color space after gamut corrections
have been applied. For example, the color space may be
changed based on the intended target display. The output of
blend unit 202 may be a single pixel stream composite of the
one or more input pixel streams. The pixel stream output of
blend unit 202 may be sent to output FIFO 210 or back onto
system bus 230. In other embodiments, the pixel stream may
be sent to other target destinations. For example, the pixel
stream may be sent to a network interface.

Output FIFO 210 may be configured to store pixels output
from blend unit 202. A FIFO as used and described herein,
may refer to a memory storage buffer in which data stored
in the buffer is read in the same order it was written. A FIFO
may be comprised of RAM or registers and may utilize
pointers to the first and last entries in the FIFO.
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Output FIFO 210 may be the interface to the display
backend (not shown), which may control the display to
display the pixels generated by display control unit 200. The
display backend may read pixels at a regular rate from
output FIFO 210 according to a pixel clock. The rate may
depend on the resolution of the display as well as the refresh
rate of the display. For example, a display having a resolu-
tion of NxM and a refresh rate of R frames per second may
have a pixel clock frequency based on NxMxR. On the other
hand, output FIFO 210 may be written by blend unit 202 as
pixels are generated by blend unit 202. In some instances,
the rate at which display control unit 200 generates pixels
may be faster than the rate at which the pixels are read,
assuming that data is provided to display control unit 200
from the memory (not shown) quickly enough. The pixels in
output FIFO 210 may thus be a measure of a margin of
safety for display control unit 200 before erroneous opera-
tion is observed on the display. Additionally, the amount of
data that is available within video/UI pipes 201A-B to
generate additional pixels for the output FIFO 210 may be
viewed as an additional margin of safety.

Control unit 205 may receive various control signals and
include various control logic for managing the overall
operation of display control unit 200. For example, control
unit 205 may receive a signal to indicate a new video frame
is ready for processing. In some embodiments, this signal be
generated outside of display control unit 200 and in other
embodiments display control unit 200 may generate the
signal. The parameters that display control unit 200 uses to
control how the various sub-blocks manipulate the video
frame may be stored in various control registers (not shown).
These registers may include data setting input and output
frame sizes, setting input and output pixel formats, location
of the source frames, and destination of the output.

Control unit 205 may also be configured to monitor how
far ahead each requestor is of the next pixel to be popped
from the output FIFO 210. Control unit 205 may receive
indications from the video/UI pipes 201A-B and output
FIFO 210 regarding the output equivalent coordinates of the
youngest and oldest pixels of each requestor in the display
control unit 200. Control unit 205 may determine a pixel
distance from the difference between the output coordinate
of the next pixel to be popped and the output equivalent
coordinate of the youngest source pixel on a per-requestor
basis. The youngest source pixel refers to the youngest (or
furthest ahead) source pixel with all older source pixels
having already been received by the corresponding video/UI
pipe 201. For example, if the source frame is being scanned
from top to bottom and from left to right, the pixels to the
top and left are considered older than pixels to the bottom
and right of the source frame. Accordingly for this scanning
pattern, when determining the relative age of two pixels on
the same row of the source frame, the pixel further to the
right would be considered the younger of the two pixels.

In one embodiment, there may be four requestors in
display controller 200, with two requestors per video/UI
pipe 201A-B. Other embodiments may have other numbers
of requestors. Control unit 205 may utilize the per-requestor
pixel distance to designate a quality of service (QoS) state
for each requestor. The QoS states may be utilized to control
the priority of requests that are sent to memory from each
requestor. In one embodiment, there may be three QoS
levels—green, yellow, and red corresponding to low,
medium, and high levels of priority, respectively. The QoS
information may be generated per request and/or may be
communicated to the communication fabric and memory
subsystem via sideband signaling.
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In some embodiments, the fetch requests generated by
video/UI pipes 201 A-B may be processed out of order and
some younger pixels may be received from the source buffer
prior to older pixels. Accordingly, there may be gaps of
missing pixels which have yet to be received between the
youngest received pixel and the youngest consecutively
received pixel. The pixel distance ahead as calculated by
control unit 205 refers to the number of consecutive pixels
(without any intervening gaps) that are available for pro-
cessing and display without relying on any additional source
pixels being retrieved from the memory subsystem.

This per-requestor pixel distance allows control unit 205
to determine if any requestors are lagging behind the other
requestors and to utilize QoS control unit 220 to increase the
QoS level of these lagging requestors. By increasing the
QoS level of only these lagging requestors, memory sub-
system performance is not as burdened as it would be if the
QoS level were increased for all requestors. When the QoS
level of the lagging requestors is increased, the priority of
their outstanding fetch requests and new fetch requests will
be increased, allowing these requestors to catch up to the
other requestors which are further ahead. In one embodi-
ment, control unit 205 may calculate a per-requestor pixel
distance and then convey these distances to QoS control unit
220. QoS control unit 220 may compare each distance to one
or more thresholds and utilize the result of the comparisons
to generate a QoS level for each requestor.

The QoS control unit 220 may receive the per-requestor
pixel distances, and may be configured to compare the
per-requestor pixel distances to one or more programmable
thresholds. In one embodiment, QoS control unit 220 may
implement green, yellow, and red QoS levels as increasing
levels of priority. There may be a threshold for each level
(except for the green level, since that is the normal level if
all of the thresholds have been exceeded). Thus, an embodi-
ment that implements the green, yellow, and red QoS levels
may include a red threshold and a yellow threshold. The red
threshold may be the lowest threshold. If the pixel distance
for a given requestor is less than the red threshold, the QoS
control unit 220 may generate the red QoS level for the
given requestor. If the pixel distance is greater than the red
threshold but less than the yellow threshold, the QoS control
unit 220 may generate the yellow QoS level. If the pixel
distance is greater than the yellow threshold, the QoS control
unit 220 may generate the green QoS level. The QoS control
unit 220 may provide the generated level to the correspond-
ing video/UI pipe 201, which may transmit the QoS level
with each memory read operation for the given requestor to
bus 230. The QoS level may also be transmitted to the
memory subsystem via sideband channel 225 to increase the
QoS level of outstanding requests for the given requestor.

In one embodiment, the QoS control unit 220 may imple-
ment on and off thresholds to permit hysteresis in the
changing between levels. That is, for each QoS level there
may be an on threshold above which the pixel distance is to
rise to increase the QoS level, and an off threshold below
which the pixel distance is to drop to decrease the QoS level.
In such embodiments, the current QoS level may be included
in determining the QoS level for a request, in addition to the
thresholds. Other embodiments may not implement hyster-
esis and may have one threshold level per QoS level. It is
noted that embodiments which support hysteresis may be
programmed to operate without hysteresis by setting the on
and off thresholds to the same value.

It is noted that the display control unit 200 illustrated in
FIG. 2 is merely an example. In other embodiments, differ-
ent functional blocks and different configurations of func-
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tional blocks may be possible depending on the specific
application for which the display processor is intended. For
example, more than two video/UI pipelines may be included
within a display control unit in other embodiments.

Turning to FIG. 3, a block diagram of one embodiment of
a video/UI pipeline 300 is shown. Video/UI pipeline 300
may correspond to video/UI pipelines 201A and 201B of
display control unit 200 as illustrated in FIG. 2. In the
illustrated embodiment, video/UI pipeline 300 includes
fetch unit 305, dither unit 310, line buffer 315, scaler unit(s)
320, color space converter 325, gamut adjust unit 330, and
control unit 335. In general, video/UI pipeline 300 may be
responsible for fetching pixel data for source frames stored
in a memory, and then processing the fetched data before
sending the processed data to a blend unit, such as, blend
unit 202 of display control unit 200 as illustrated in FIG. 2.

Fetch unit 305 may be configured to generate read
requests for source pixel data needed by video/UI pipeline
300. When a read request is generated, the output equivalent
pixel of the source pixel data being fetched may be calcu-
lated, which is described in more detail below in the
discussion of FIG. 4. Also, a QoS priority may be assigned
to the read request based on how far ahead in pixels the
given requestor is of the next pixel to be popped from the
output FIFO (e.g., output FIFO 210 of FIG. 2).

Fetching the source lines from the source buffer is com-
monly referred to as a “pass” of the source buffer. An initial
pass of the source buffer may, in various embodiments,
include a fetch of multiple lines from the source buffer. In
other embodiments, subsequent passes through of the source
buffer may require fewer lines. During each pass of the
source buffer, required portions or blocks of data may be
fetched from top to bottom, then from left to right, where
“top,” “bottom,” “left,” and “right” are in reference to a
display. In other embodiments, passes of the source buffer
may proceed differently.

Each read request may include one or more addresses
indicating where the portion of data is stored in memory. In
some embodiments, address information included in the
read requests may be directed towards a virtual (also
referred to herein as “logical”) address space, wherein
addresses do not directly point to physical locations within
a memory device. In such cases, the virtual addresses may
be mapped to physical addresses before the read requests are
sent to the source buffer. A memory management unit may,
in some embodiments, be used to map the virtual addresses
to physical addresses. In some embodiments, the memory
management unit may be included within the display control
unit, while in other embodiments, the memory management
unit may be located elsewhere within a computing system.

Dither unit 310 may, in various embodiments, provide
structured noise dithering on the Luma channel of YCbCr
formatted data. Other channels, such as the chroma channels
of YCbCr, and other formats, such as ARGB may not be
dithered. In various embodiments, dither unit 310 may apply
a two-dimensional array of Gaussian noise (i.e., statistical
noise that is normally distributed) to blocks of the source
frame data. A block of source frame data may, in some
embodiments, include one or more source pixels. The noise
may be applied to raw source data fetched from memory
prior to scaling.

Line buffer 315 may be configured to store the incoming
frame data corresponding to row lines of a respective display
screen. The frame data may be indicative of luminance and
chrominance of individual pixels included within the row
lines. Line buffer 315 may be designed in accordance with
one of various design styles. For example, line buffer 315
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may be a SRAM, DRAM, or any other suitable memory
type. In some embodiments, line buffer 315 may include a
single input/output port, while, in other embodiments, line
buffer 315 may have multiple data input/output ports. It is
noted that line buffer 315 is representative of any number of
line buffers which may be utilized in a given video/UI
pipeline.

In one embodiment, control unit 335 may be configured
to determine the output coordinate of the youngest consecu-
tively received source pixel which is stored in line buffer 315
for each requestor. In some embodiments, pixel fetch
requests may return out of order, and the youngest consecu-
tively received source pixel refers to the youngest source
pixel such that all older source pixels are already stored in
line buffer 315. The youngest consecutively received source
pixel per requestor may be utilized to determine how far
ahead each requestor is of the next pixel to be popped out of
the output FIFO. A QoS priority level may be assigned to the
requestor based on how far ahead the requestor is of the next
pixel to be popped out of the output FIFO, such that the
further ahead a given requestor is of the next pixel to be
popped, the lower the priority assigned to the given
requestor.

In some embodiments, scaling of source pixels may be
performed in two steps. The first step may perform a vertical
scaling, and the second step may perform a horizontal
scaling. In the illustrated embodiment, scaler unit(s) 320
may perform the vertical and horizontal scaling. Scaler
unit(s) 320 may be designed according to one of varying
design styles. In some embodiments, the vertical scaler and
horizontal scaler of scaler unit(s) 320 may be implemented
as 9-tap 32-phase filters. These multi-phase filters may, in
various embodiments, multiply each pixel retrieved by fetch
unit 305 by a weighting factor. The resultant pixel values
may then be added, and then rounded to form a scaled pixel.
The selection of pixels to be used in the scaling process may
be a function of a portion of a scale position value. In some
embodiments, the weighting factors may be stored in a
programmable table, and the selection of the weighting
factors to use in the scaling may be a function of a different
portion of the scale position value.

In some embodiments, the scale position value (also
referred to herein as the “display position value”), may
included multiple portions. For example, the scale position
value may include an integer portion and a fractional por-
tion. In some embodiments, the determination of which
pixels to scale may depend on the integer portion of the scale
position value, and the selecting of weighting factors may
depend on the fractional portion of the scale position value.
In some embodiments, a Digital Differential Analyzer
(DDA) may be used to determine the scale position value.

Color management within video/UI pipeline 300 may be
performed by color space converter 325 and gamut adjust
unit 330. In some embodiments, color space converter 325
may be configured to convert YCbCr source data to the RGB
format. Alternatively, color space converter may be config-
ured to remove offsets from source data in the RGB format.
Color space converter 325 may, in various embodiments,
include a variety of functional blocks, such as an input offset
unit, a matrix multiplier, and an output offset unit (all not
shown). The use of such blocks may allow the conversion
from YCbCr format to RGB format and vice-versa.

In various embodiments, gamut adjust unit 330 may be
configured to convert pixels from a non-linear color space to
a linear color space, and vice-versa. In some embodiments,
gamut adjust unit 330 may include a Look Up Table (LUT)
and an interpolation unit. The LUT may, in some embodi-
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ments, be programmable and be designed according to one
of various design styles. For example, the LUT may include
a SRAM or DRAM, or any other suitable memory circuit. In
some embodiments, multiple LUTs may be employed. For
example, separate LUTs may be used for Gamma and
De-Gamma calculations.

It is note that the embodiment illustrated in FIG. 3 is
merely an example. In other embodiments, different func-
tional blocks and different configurations of functional
blocks are possible and contemplated.

Turning now to FIG. 4, one embodiment of a Digital
Differential Analyzer (DDA) 400 is shown. In the illustrated
embodiment, DDA 400 includes a (N+M)-bit register which
may be configured to store a (N+M)-bit fixed point number
in two’s complement format, wherein ‘N” and ‘M’ are
positive integers. In some embodiments, the (N+M)-bit fixed
point number may include an N-bit integer portion and an
M-bit fraction portion. In one embodiment, ‘N’ may be 16
and ‘M’ may be 20. In other embodiments, other values of
‘N” and ‘M’ may be utilized. DDA 400 may, in some
embodiments, be divided into two portions such as frac-
tional portion 401 and integer portion 402, each of which
may be configured to store respective portions of the fixed
point number. In some embodiments, the number stored in
DDA 400 may be rounded. When rounding is performed, the
fractional portion of the number may be rounded first, and
the result of rounding the fractional portion may be used
when rounding the integer portion of the fixed point number.

During operation, DDA 400 may be initialized with a
starting value. A step value may then be added to the value
stored in DDA 400. In some embodiments, a step value of
less than one may indicate that a given portion of source
pixel data is being upscaled. A step value of greater than one
may indicate that a given portion of source pixel data is
being downscaled. In some embodiments, luminance and
chrominance values of YCbCr format pixel data may be
scaled individually.

DDA 400 may be designed according to one of various
design styles. In some embodiments, DDA 400 may include
multiple latches, flip-flops, or any other suitable storage
circuitry coupled together in parallel to form the bit width
necessary to store the fixed point number. Such latches and
flip-flops may be particular embodiments of storage circuits
configured to store a single data bit, and may in various
embodiments, be configured to operate synchronously or
asynchronously. In some embodiments, the latches or flip-
flops may be configured to reset to a predetermined value,
such as a logical 0. It is noted that a “logical 0” (also referred
to as a “low” or “low logic level”) refers to a voltage at or
near ground potential and that a “logical 17 (also referred to
as a “high” or “high logic level”) refers to a voltage level
sufficiently large to activate an re-channel Metal-Oxide
Semiconductor Field-Effect Transistor (MOSFET). In other
embodiments, different technology may result in different
voltage levels for “low” and “high.”

Video pipelines 201A and 201B (of FIG. 2) may each
calculate output coordinates for the portion of the image data
each pipeline is fetching and processing. The calculation of
the output coordinates may depend on a scale factor and a
step applied within each DDA of video/UI pipelines 201 A
and 201B. In some embodiments, when the scale factor is
one such that the source pixel data does not need to be
scaled, the display region may equal the source region and
a separate calculation of display coordinates may not be
necessary.

Each of video/UI pipelines 201A and 201B may utilize
their own DDA unit to perform separate calculations for the
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x-component and y-component of the output coordinate. In
some embodiments, the inverse of the horizontal step within
the DDA units may be used to determine the x-component.
The size of a pixel, an offset in the destination, and scaling
factors (both horizontal and vertical) may also be used in the
course of calculating the x-component and y-component of
the output coordinate.

For a first pass of each plane in a given video/UI pipeline,
the output Y coordinate may be initialized to the appropriate
starting value. The output Y coordinate may then be incre-
mented for each subsequent pass of the plane. The output X
coordinate may be initialized to the appropriate starting
value and then incremented with the inverse of the DDA step
size for each new input pixel. In one embodiment, the DDA
unit used to calculate the X coordinate may also be a signed
36-bit value similar to DDA 400. The X coordinate may be
incremented by the inverse of the DDA step size for each
new column of input pixels being fetched.

It is noted that the embodiment of a DDA depicted in FIG.
4 is one of many possible embodiments. In other embodi-
ments, different bit widths and different configurations of
bits within the register may be employed.

Referring now to FIG. 5, one embodiment of a table of
per-requestor pixel distances is shown. Table 500 includes
information for a plurality of requestors, and this informa-
tion includes a calculated per-requestor pixel distance. A
control unit (e.g., control unit 205 of FIG. 2) may be
configured to maintain table 500. As shown, table 500
includes information for four separate requestors. It is noted
that in other embodiments, a display control unit (e.g.,
display control unit 200 of FIG. 2) may have other numbers
of requestors either less than or greater than four. Addition-
ally, the information stored in table 500 may be stored in the
display control unit in any suitable structure, depending on
the embodiment, and not necessarily in a table.

The requestor IDs 505A-D may be assigned to the dif-
ferent planes of video and/or user interface source frames
being used to produce a destination frame. For example, in
one embodiment, requestor ID 505A may be a first plane of
a first source frame, requestor ID 505B may be a second
plane of the first source frame, requestor ID 505C may be a
first plane of a second source frame, and requestor 1D 505D
may be a second plane of the second source frame. In other
embodiments, the requestor 505A-D may be assigned dif-
ferently to the planes of the one or more source frames
and/or there may be other numbers of requestors besides
four.

For each requestor 505A-D, the output coordinate calcu-
lated for the oldest outstanding read request may be deter-
mined and stored in table 500. Also, the output coordinate of
the oldest pixel in the pipeline for each requestor 505A-D
may also be determined and stored in table 500. In some
cases, the oldest pixel may correspond to the next pixel to be
popped from the output FIFO (e.g., output FIFO 210 of FIG.
2).

The total per-requestor pixel distance ahead may be
calculated using the output coordinates of the oldest out-
standing read request and oldest pixel in table 500. The total
per-requestor pixel distance ahead corresponds to the num-
ber of consecutive source pixels already retrieved from
memory and available for all processing stages, with the
pixel distance computed in terms of output pixels. It is noted
that the total per-requestor consecutive pixel count is not
necessarily the same as the total pixel count. For example,
a requestor may have received several younger source pixels
but may still be waiting to receive an older source pixel.
Therefore, these younger source pixels will not count toward
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the total per-requestor consecutive pixel count shown in
table 500. The distance ahead for each requestor is measured
in output pixels. Some of these output pixels may corre-
spond to source pixels stored in the corresponding line
buffer, other processing stages (e.g., scaler unit(s)), or output
pixels stored in the output FIFO. The distance indicates how
many additional consecutive output pixels are either already
ready to be output to the display or can be created from the
already received source pixels.

As shown in table 500, requestor 1D 505A is 4126 output
pixels ahead of the next pixel to be popped (or oldest
equivalent coordinate (N,M)) and requestor ID 505B is 2077
output pixels ahead. For the purposes of this discussion, it
may be assumed that a row of the output frame is 2048 pixels
wide, although other row sizes may be utilized in other
embodiments. Additionally, it may also be assumed these
pixel distances are sufficient to maintain enough margin of
error for processing purposes and therefore these requestors
may be assigned the lowest QoS level of green. For example,
in one embodiment, an output pixel distance of greater than
2000 pixels may correspond to a QoS level of green, an
output pixel distance of greater than 1000 pixels and less
than 2000 pixels may correspond to a QoS level of yellow,
and an output pixel distance of less than 1000 pixels may
correspond to a QoS level of red. It is noted that on and off
thresholds may be utilized to permit hysteresis in the chang-
ing between QoS levels.

Requestor ID 505C is 1208 pixels ahead as shown in table
500, and this distance may correspond to a QoS level of
yellow in this example. Requestor 1D 505D is lagging
behind the other requestors and is only 8 pixels ahead of the
next pixel to be popped, and this distance may correspond to
the highest QoS level of red. These example output pixel
distances and corresponding QoS level priorities are used
merely for illustrative purposes. For example, the threshold
levels used for assigning QoS levels or red, green, and
yellow may vary according to the embodiment and may
differ from the examples shown in table 500.

Turning now to FIG. 6, a block diagram of a destination
frame 600 showing the output coordinates of pixels retrieved
for requestor 505D is shown. The pixels which have been
retrieved and stored in the display pipeline for requestor
505D and have not yet been popped from the output FIFO
are shown in their output equivalent coordinate locations
within destination frame 600. As shown in table 500 (of FI1G.
5), the output pixel corresponding to the oldest outstanding
source pixel read request for requestor 505D is 8 pixels
ahead of the output coordinate of the oldest pixel (i.e., the
next pixel to be popped from the output FIFO).

The pixels shown in destination frame 600 are located on
row N. It may be assumed for the purposes of this discussion
that the next pixel to be popped from the output FIFO is the
pixel with an output coordinate of (N,M). The other pixels
from output coordinates of (N,M+1) through (N,M+7) are
also present within the corresponding video/UI pipeline. The
pixel with an output coordinate of (N,M+8) is the output
pixel corresponding to the oldest outstanding read request in
this example since all older pixels have already been
retrieved and stored within the video/UI pipeline.

It may be assumed for the purposes of this discussion that
one or more necessary source pixels corresponding to the
output pixel with output coordinate of (N,M+8) have not yet
been stored in the line buffer of the corresponding video/UI
pipeline. This is indicated with an ‘x” in the location of
output coordinate (N,M+8) in destination frame 600. It may
also be assumed that the source pixels corresponding to
output pixels with output coordinates of (N,M+9) and
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(N,M+10) have been retrieved and stored in the line buffer
of the video/UI pipeline. In some cases, younger source
pixels may be received by the line buffer ahead of older
source pixels in systems that support out-of-order processing
of pixel fetch requests. In the example shown in FIG. 6, the
youngest output pixel for which the corresponding one or
more necessary source pixels have been received for
requestor 505D has an output coordinate of (N,M+10).
However, this output coordinate may not be the one that is
used in the calculation of the pixel distance ahead for
requestor 505D since there are one or more missing source
pixels corresponding to the older output pixel at (N,M+8).
Therefore, to calculate the pixel distance ahead, the output
equivalent coordinate corresponding to the oldest outstand-
ing read request may be used rather than the output equiva-
lent coordinate of the youngest received source pixel.

It is to be understood that the example shown in FIG. 6 is
merely intended to illustrate how pixel distances are calcu-
lated for output coordinates of a destination frame for a
single requestor in accordance with one embodiment. Other
embodiments may calculate pixel distance using other suit-
able techniques. It is also noted that in a typical embodiment,
a given requestor may be many rows ahead of the next pixel
to be popped rather than on the same row.

Turning now to FIG. 7, a block diagram of a destination
frame 700 showing the output coordinates of pixels retrieved
for an individual requestor 705 is shown. The pixels which
have been retrieved and stored in the display control unit
(e.g., display control unit 200 of FIG. 2) for the given
requestor 705 and which have not yet been conveyed from
the display control unit to the display are shown in their
output equivalent coordinate locations within destination
frame 700.

The pixels shown in destination frame 700 are located on
row N through row N+5. It may be assumed for the purposes
of this discussion that the next pixel to be displayed is the
pixel with an output coordinate of (N,M). It may also be
assumed that all necessary source pixels needed to produce
the consecutive output pixels from column ‘M’ of row N to
column ‘M+2’ of row N+5 for the given requestor have been
received by the corresponding video/UI pipeline of the
display control unit and have not yet been conveyed to the
display. These consecutive pixels may be stored in the
corresponding line buffer, output FIFO, or another location
(e.g., scaler unit) within the display control unit. The pixel
with an output coordinate of (N+5,M+3) is shown as the
output pixel corresponding to the oldest outstanding read
request in this example since all of the necessary source
pixels to produce older output pixels have been retrieved and
stored within the video/UI pipeline.

In one embodiment, the control logic (e.g., control unit
205 of FIG. 2) of the display control unit may calculate the
pixel distance from the next pixel to be displayed (coordi-
nate (N, M)) to the youngest output equivalent coordinate
for which all necessary source pixels have been received
without any intervening gaps (coordinate (N+5, M+2)). This
pixel distance may be based on a scan pattern used to
determine an order in which pixels are conveyed for display
on a display device. It may be assumed for the purposes of
this discussion that the scan pattern goes from left to right
and from top to bottom. It may also be assumed that a row
contains ‘P’ pixels. Therefore, using this scan pattern and
row length, the pixel distance between the next pixel to be
displayed and the output equivalent coordinate of the young-
est consecutively received source pixel data is 5*P+2 pixels.
Alternatively, in another embodiment, the control logic may
calculate the pixel distance between the next pixel to be
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displayed (coordinate (N, M)) and the pixel corresponding
to the oldest outstanding pixel fetch request for the given
requestor (coordinate (N+5, M+3). This pixel distance
would be 5*P+3 pixels for this example.

Referring now to FIG. 8, one embodiment of a method
800 for implementing targeted escalation of pixel requests
based on a calculated pixel distance is shown. For purposes
of discussion, the steps in this embodiment are shown in
sequential order. It should be noted that in various embodi-
ments of the method described below, one or more of the
elements described may be performed concurrently, in a
different order than shown, or may be omitted entirely. Other
additional elements may also be performed as desired. It is
noted that a separate instance of method 800 may be
performed for each requestor in the display control unit (e.g.,
display control unit 200 of FIG. 2).

Control logic (e.g., control unit 205 of FIG. 2) may
determine the output equivalent coordinate of the next pixel
to be popped out of the output FIFO (e.g., output FIFO 210
of FIG. 2) for the given requestor (block 805). Alternatively,
the control logic may determine the output equivalent coor-
dinate of the last popped pixel out of the output FIFO for the
given requestor. In some cases, the output equivalent coor-
dinate of the next pixel to be popped out of the output FIFO
may be the same for each requestor of the plurality of
requestors.

The control logic may also determine the output equiva-
lent coordinate of the oldest outstanding source pixel fetch
request for the given requestor (block 810). In one embodi-
ment, received source pixels may be stored in one or more
line buffers (e.g., line bufter 315 of FIG. 3) of the video/UI
pipe (e.g., video/UI pipe 201A-B of FIG. 2) within the
display control unit.

Next, the control logic may calculate the distance between
the output coordinate of the next pixel to be popped and the
output coordinate of the oldest outstanding source pixel
fetch request (block 815). This distance may be calculated in
terms of the pixel scan pattern being used to fetch source
pixels from the source frame(s). Then, the control logic may
compare the calculated distance to one or more thresholds
(block 820). Next, the control logic may assign a QoS level
to the given requestor based on the comparison of the
calculated distance to the one or more thresholds and based
on the current QoS level (block 825). The QoS level may be
assigned to new source pixel fetch requests generated by the
given requestor and may also be used to update the QoS
level of the given requestor’s outstanding source pixel fetch
requests in the memory subsystem via a sideband signal. In
one embodiment, the control logic may implement on and
off thresholds to permit hysteresis in the changing between
QoS levels. That is, for each QoS level there may be an on
threshold above which the calculated distance is to rise to
increase the QoS level, and an off threshold below which the
calculated distance is to drop to decrease the QoS level. In
such embodiments, the current QoS level may be included
in determining the QoS level for a request, in addition to the
thresholds. Other embodiments may not implement hyster-
esis and may have one threshold level per QoS level. It is
noted that embodiments which support hysteresis may be
programmed to operate without hysteresis by setting the on
and off thresholds to the same value. In other embodiments,
other techniques for setting the QoS level of the given
requestor based on the calculated distance may be utilized.
After block 825, method 800 may end. It is noted that
method 800 may be performed on a periodic basis, for
example, every ‘N’ clock cycles. Alternatively, method 800
may be performed for a given requestor in response to
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detecting a triggering event (e.g., line buffer occupancy falls
below a programmable threshold).

Turning now to FIG. 9, one embodiment of a method 900
for assigning QoS levels to source pixel fetch requests is
shown. For purposes of discussion, the steps in this embodi-
ment are shown in sequential order. It should be noted that
in various embodiments of the method described below, one
or more of the elements described may be performed con-
currently, in a different order than shown, or may be omitted
entirely. Other additional elements may also be performed as
desired. It is noted that a separate instance of method 900
may be performed for each requestor in a display control
unit (e.g., display control unit 200 of FIG. 2).

Control logic (e.g., control unit 205 of FIG. 2) may
determine an oldest pixel of a given requestor in the display
control unit (block 905). In one embodiment, the oldest pixel
may refer to the next pixel to be conveyed from the display
control unit to a display. Also, the control logic may deter-
mine the oldest outstanding pixel fetch request of the given
requestor which has not yet been received by the display
control unit (block 910). In one embodiment, when a pixel
fetch request is sent from the display control unit to the
memory subsystem, one or more entries may be allocated for
the pixel fetch request in the corresponding line buffer of the
video/UI pipe. When the source pixel data corresponding to
the pixel fetch request is retrieved and sent to the display
control unit, the source pixel data may be stored in the one
or more allocated entries of the corresponding line buffer. In
this embodiment, the control logic may determine the oldest
empty allocated entry of the line buffer corresponding to the
given requestor. Additionally, the output equivalent coordi-
nate of the pixel data corresponding to the oldest outstanding
pixel fetch request of the given requestor may be calculated
(block 915).

Next, the control logic may calculate a pixel distance
between the oldest pixel and the output coordinate corre-
sponding to the oldest outstanding pixel fetch request (block
920). The control logic may utilize the output equivalent
coordinate calculated in block 915 to calculate the pixel
distance. The pixel distance refers to the pixel scan pattern
distance between the oldest pixel and the output equivalent
coordinate of the pixel corresponding to the oldest outstand-
ing pixel fetch request. It is noted that any of various scan
patterns may be used when conveying pixels from the
display control unit to the display, depending on the embodi-
ment.

Next, the control logic may determine a QoS level based
on the calculated pixel distance and on the current QoS level
(block 925). The QoS level may be inversely proportional to
the calculated pixel distance such that a relatively large
calculated pixel distance will result in a relatively low QoS
level and a relatively small calculated pixel distance will
result in a relatively high QoS level. Then, the selected QoS
level may be assigned to pixel fetch requests of the given
requestor (block 930). The selected QoS level may be
assigned to outstanding pixel fetch requests and/or new fetch
requests of the given requestor. After block 930, method 900
may end.

It is noted that when a relatively high QoS level is
assigned to the given requestor, the pixel fetch requests will
be serviced with a higher priority by the memory subsystem
than other memory requests of other requestors with a
relatively low QoS level. It is noted that method 900 may be
performed on a periodic basis, for example, every ‘N’ clock
cycles, wherein N is a programmable integer. Alternatively,
method 900 may be performed for a given requestor in
response to detecting a triggering event.
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Referring next to FIG. 10, a block diagram of one
embodiment of a system 1000 is shown. As shown, system
1000 may represent chip, circuitry, components, etc., of a
desktop computer 1010, laptop computer 1020, tablet com-
puter 1030, cell phone 1040, television 1050 (or set top box
configured to be coupled to a television), or otherwise. Other
devices are possible and are contemplated. In the illustrated
embodiment, the system 1000 includes at least one instance
of SoC 10 (of FIG. 1) coupled to an external memory 1002.

SoC 10 is coupled to one or more peripherals 1004 and the
external memory 1002. A power supply 1006 is also pro-
vided which supplies the supply voltages to SoC 10 as well
as one or more supply voltages to the memory 1002 and/or
the peripherals 1004. In various embodiments, power supply
1006 may represent a battery (e.g., a rechargeable battery in
a smart phone, laptop or tablet computer). In some embodi-
ments, more than one instance of SoC 10 may be included
(and more than one external memory 1002 may be included
as well).

The memory 1002 may be any type of memory, such as
dynamic random access memory (DRAM), synchronous
DRAM (SDRAM), double data rate (DDR, DDR2, DDR3,
etc.) SDRAM (including mobile versions of the SDRAMs
such as mDDR3, etc., and/or low power versions of the
SDRAMs such as LPDDR2, etc.), RAMBUS DRAM
(RDRAM), static RAM (SRAM), etc. One or more memory
devices may be coupled onto a circuit board to form memory
modules such as single inline memory modules (SIMMs),
dual inline memory modules (DIMMs), etc. Alternatively,
the devices may be mounted with SoC 10 in a chip-on-chip
configuration, a package-on-package configuration, or a
multi-chip module configuration.

The peripherals 1004 may include any desired circuitry,
depending on the type of system 1000. For example, in one
embodiment, peripherals 1004 may include devices for
various types of wireless communication, such as wifi,
Bluetooth, cellular, global positioning system, etc. The
peripherals 1004 may also include additional storage,
including RAM storage, solid state storage, or disk storage.
The peripherals 1004 may include user interface devices
such as a display screen, including touch display screens or
multitouch display screens, keyboard or other input devices,
microphones, speakers, etc.

In various embodiments, program instructions of a soft-
ware application may be used to implement the methods
and/or mechanisms previously described. The program
instructions may describe the behavior of hardware in a
high-level programming language, such as C. Alternatively,
a hardware design language (HDL) may be used, such as
Verilog. The program instructions may be stored on a
non-transitory computer readable storage medium. Numer-
ous types of storage media are available. The storage
medium may be accessible by a computer during use to
provide the program instructions and accompanying data to
the computer for program execution. In some embodiments,
a synthesis tool reads the program instructions in order to
produce a netlist comprising a list of gates from a synthesis
library.

It should be emphasized that the above-described embodi-
ments are only non-limiting examples of implementations.
Numerous variations and modifications will become appar-
ent to those skilled in the art once the above disclosure is
fully appreciated. It is intended that the following claims be
interpreted to embrace all such variations and modifications.
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What is claimed is:

1. A method comprising:

identifying an oldest output pixel stored in a display

pipeline for a first requestor;

identifying an oldest outstanding pixel fetch request of the

first requestor, wherein the oldest outstanding pixel
fetch request is for a first source pixel;
calculating an output equivalent coordinate of the first
source pixel, wherein the output equivalent coordinate
of the first source pixel is a coordinate of an earliest
output pixel that cannot be generated without the first
source pixel;
calculating a first distance in output pixels between the
oldest output pixel and the output equivalent coordinate
of the first source pixel within a given output frame;

determining a first quality of service (QoS) level based at
least in part on the first distance; and

assigning the first QoS level to the oldest outstanding

pixel fetch request of the first requestor, wherein
requests with the first QoS level are serviced with a
higher priority than requests with a second QoS level.

2. The method as recited in claim 1, further comprising:

identifying an oldest output pixel of a second requestor in

the display pipeline;

identifying an oldest outstanding pixel fetch request of the

second requestor, wherein the oldest outstanding pixel
fetch request is for a second source pixel;
calculating an output equivalent coordinate of the second
source pixel, wherein the output equivalent coordinate
of the second source pixel is a coordinate of an earliest
output pixel that cannot be generated without the
second source pixel;
calculating a second distance in output pixels between the
oldest output pixel of the second requestor and the
output equivalent coordinate of the second source pixel
of the second requestor within a given output frame;

determining to utilize the second QoS level based at least
in part on the second distance and on a current QoS
level associated with the second requestor; and

assigning the second QoS level to the oldest outstanding
pixel fetch request of the second requestor.

3. The method as recited in claim 1, wherein the oldest
output pixel of the first requestor is a next pixel to be popped
out of an output first-in first-out (FIFO) buffer, and wherein
calculating the first distance comprises determining how
many output pixels ahead the first requestor is of the next
pixel to be popped out of the output FIFO.

4. The method as recited in claim 1, further comprising
escalating a QoS level of the oldest outstanding pixel fetch
request of the first requestor responsive to determining the
first distance is less than a given threshold.

5. The method as recited in claim 4, further comprising
compositing the given output frame from a plurality of
source frames, wherein there is a separate requestor for each
source frame of the plurality of source frames, and wherein
only priorities of requests of the first requestor are escalated
while priorities of requests of other requestors maintain a
current priority level.

6. The method as recited in claim 5, further comprising
storing, in a table, a per-requestor count, for each requestor
of a plurality of requestors, indicating a number of output
pixels that a given requestor is ahead of a next pixel to be
popped from an output first-in first-out (FIFO) buffer.

7. The method as recited in claim 1, wherein the first
source pixel is part of multiple output pixels in the given
output frame based on scaling being performed by the
display pipeline.
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8. An apparatus comprising:

one or more pixel processing pipelines;

a buffer configured to store received pixel data; and

wherein the apparatus is configured to:

identify an oldest output pixel stored in the one or more
pixel processing pipelines for a first requestor;

identify an oldest outstanding pixel fetch request of the
first requestor, wherein the oldest outstanding pixel
fetch request is for a first source pixel;

calculate an output equivalent coordinate of the first
source pixel, wherein the output equivalent coordi-
nate of the first source pixel is a coordinate of an
earliest output pixel that cannot be generated without
the first source pixel;

calculate a first distance in output pixels between the
oldest output pixel and the output equivalent coor-
dinate of the first source pixel within a given output
frame;

determine a first quality of service (QoS) level based at
least in part on the first distance; and

assign the first QoS level to the oldest outstanding pixel
fetch request of the first requestor, wherein requests
with the first QoS level are serviced with a higher
priority than requests with a second QoS level.

9. The apparatus as recited in claim 8, wherein the
apparatus is further configured to:

identify an oldest output pixel of a second requestor in the

one or more pixel processing pipelines;

identify an oldest outstanding pixel fetch request of the

second requestor, wherein the oldest outstanding pixel
fetch request is for a second source pixel;
calculate an output equivalent coordinate of the second
source pixel, wherein the output equivalent coordinate
of the second source pixel is a coordinate of an earliest
output pixel that cannot be generated without the
second source pixel;
calculate a second distance in output pixels between the
oldest output pixel of the second requestor and the
output equivalent coordinate of the second source pixel
of the second requestor within a given output frame;

determine to utilize the second QoS level based at least in
part on the second distance and on a current QoS level
associated with the second requestor; and

assign the second QoS level to the oldest outstanding

pixel fetch request of the second requestor.

10. The apparatus as recited in claim 8, wherein the oldest
output pixel of the first requestor is a next pixel to be popped
out of the buffer, and wherein calculating the first distance
comprises determining how many output pixels ahead the
first requestor is of the next pixel to be popped out of the
buffer.

11. The apparatus as recited in claim 8, wherein the
apparatus is further configured to escalate a QoS level of the
oldest outstanding pixel fetch request of the first requestor
responsive to determining the first distance is less than a
given threshold.

12. The apparatus as recited in claim 11, wherein the
apparatus is further configured to composite the given output
frame from a plurality of source frames, wherein there is a
separate requestor for each source frame of the plurality of
source frames, and wherein only priorities of requests of the
first requestor are escalated while priorities of requests of
other requestors maintain a current priority level.

13. The apparatus as recited in claim 12, wherein the
apparatus is further configured to store, in a table, a per-
requestor count, for each requestor of a plurality of request-
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ors, indicating a number of output pixels that a given
requestor is ahead of a next pixel to be popped from the
buffer.

14. The apparatus as recited in claim 8, wherein the first
source pixel is part of multiple output pixels in the given
output frame based on scaling being performed by the one
or more pixel processing pipelines.

15. A system comprising:

a display control unit comprising one or more pixel

processing pipelines;

an output buffer; and

a memory;

wherein the display control unit is configured to:

identify an oldest output pixel stored in the display
control unit for a first requestor;

identify an oldest outstanding pixel fetch request of the
first requestor, wherein the oldest outstanding pixel
fetch request is for a first source pixel;

calculate an output equivalent coordinate of the first
source pixel, wherein the output equivalent coordi-
nate of the first source pixel is a coordinate of an
earliest output pixel that cannot be generated without
the first source pixel;

calculate a first distance in output pixels between the
oldest output pixel and the output equivalent coor-
dinate of the first source pixel within a given output
frame;

determine a first quality of service (QoS) level based at
least in part on the first distance; and

assign the first QoS level to the oldest outstanding pixel
fetch request of the first requestor, wherein requests
with the first QoS level are serviced with a higher
priority than requests with a second QoS level.

16. The system as recited in claim 15, wherein the display
control unit is further configured to:

identify an oldest output pixel of a second requestor in the

display control unit;

identify an oldest outstanding pixel fetch request of the

second requestor, wherein the oldest outstanding pixel
fetch request is for a second source pixel;
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calculate an output equivalent coordinate of the second
source pixel, wherein the output equivalent coordinate
of the second source pixel is a coordinate of an earliest
output pixel that cannot be generated without the
second source pixel;
calculate a second distance in output pixels between the
oldest output pixel of the second requestor and the
output equivalent coordinate of the second source pixel
of the second requestor within a given output frame;

determine to utilize the second QoS level based at least in
part on the second distance and on a current QoS level
associated with the second requestor; and

assign the second QoS level to the oldest outstanding

pixel fetch request of the second requestor.

17. The system as recited in claim 15, wherein the oldest
output pixel of the first requestor is a next pixel to be popped
out of the output buffer, and wherein calculating the first
distance comprises determining how many output pixels
ahead the first requestor is of the next pixel to be popped out
of the buffer.

18. The system as recited in claim 15, wherein the display
control unit is further configured to escalate a QoS level of
the oldest outstanding pixel fetch request of the first
requestor responsive to determining the first distance is less
than a given threshold.

19. The system as recited in claim 18, wherein the display
control unit is further configured to composite the given
output frame from a plurality of source frames, wherein
there is a separate requestor for each source frame of the
plurality of source frames, and wherein only priorities of
requests of the first requestor are escalated while priorities of
requests of other requestors maintain a current priority level.

20. The system as recited in claim 15, wherein the display
control unit is further configured to store, in a table, a
per-requestor count, for each requestor of a plurality of
requestors, indicating a number of output pixels that a given
requestor is ahead of a next pixel to be popped from the
output buffer.



